73. Reference Methods for Measuring Airborne Man-Made Mineral Fibers. Environmental Health Series 4. Copenhagen:World Health Organization. 1985
74. Ryman-Rasmussen J.P., Cesta M.F., Brody A.R. et al. Inhaled carbon nanotubes reach the subpleural tissue in mice. // Nat Nanotechnol. 2009. Vol.4(11). P.747-751.
75. Saito N., Haniu H., Usui Yu., et al. Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials // Chem Rev. 2014. Vol. 114(11). P. 6040-6079.
76. Sargent L.M., Reynolds S.H., Castranova V. Potential pulmonary effects of engineered carbon nanotubes: in vitro genotoxic effects. // Nanotoxicology. 2010. P. 396-408.
77. Sargent L.M., Porter D.W., Staska L.M. et al. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotube. // Part Fibre Toxicol. 2014. Vol. 11. P. 3
78. Sharma S.C., Sarkar S., Periyakaruppan A. et al. Single-walled carbon nanotube induces oxidative stress in rat lung epoithelial cells. // J Nanosci Nanotechnol. 2007. Vol. 7(7). P. 2466-2472.
79. Shields K.N., Cavallari J.M., Hun M.J. et al. Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: a panel study. // Environ Health. 2013. Vol. 12. P. 7.
80. Shimizu K., Uchiyama A., Yamashita M. et al. Biomembrane damage caused by exposure to multi-walled carbon nanotubes. // J Toxicol Sci. 2013. Vol. 38(1). P. 7-12.
81. Shvedova A.A., Kisin E., Murray A.R. et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. // Am J Physiol Lung Cell Mol Physiol. 2008. Vol.295(4). P. 552-565.
82. Shvedova A.A., Tkach A.V., Kisin E.R. et al. Carbon Nanotubes Enhance Metastatic Growth of Lung Carcinoma via Up-Regulation of Myeloid-Derived Suppressor Cells. // Small. 2013. №9-10. P.1691-1695.